Overview of Mobile LiDAR for Transportation Applications

PAG Transportation Systems Subcommittee / RTA Safety Working Group

November 15th, 2013
Figure 5. Comparison of airborne and mobile LIDAR systems.

Airborne LIDAR
- Direct view of pavement & building tops
- Poor (oblique) view of vertical faces
- Faster coverage
- Larger footprint
- Laser travels much farther
- Not limited to area visible from roadway
- Lower point density (1-60 points/m²)

Mobile LIDAR
- Good view of pavement
- Direct view of vertical faces
- Cannot capture building tops
- Slower coverage
- Smaller footprint
- Closer to ground objects
- Limited to objects close and visible from the roadway
- Higher point density (100’s points/m²) but more variable
TRANSEND
May, 2010

A magazine for employees, retirees and stakeholders of the Arizona Department of Transportation

INSIDE
Creating Jobs 6
Clearing road to North Rim 7
Farewell to a friend 10
Respect for all 11

GOING 3-D
Bulked-up photolog van takes data to a new level, p. 3

3D point cloud of an underpass in Phoenix
On the road: Photologgers capture more than 8 terabytes of images and data from state highways

by John Tucker, Editor

Every spring, Robert Bush and Tim O’Connor hit the road in a nearly $750,000 van to take photographs of Arizona.

It might sound like a dream trip, but the transportation photolog specialists are on the job, using high-tech cameras, lasers, and GPS technology to create a comprehensive record of the state highway system.

From mid-March to mid-September, Bush and O’Connor typically spend their work weeks collecting images and other data on an average of 250 to 275 miles of Arizona highways each day. One drives while the other mans a workstation in the middle of the van, monitoring the cameras and other equipment through two powerful PCs. The two men sometimes trade off on the duties.

ADOT began photologging the state system in 1970 with a 16mm color-film camera mounted to the dashboard of a van. The new photolog van, which made its maiden voyage in March 2009, makes all its forerunners look like horse-drawn buggies.

It’s a specially designed 2008 Ford E350 van equipped with two sophisticated high-definition cameras and a host of other high-tech equipment mounted on top of or stored inside the van. The two cameras take HD photographs every 10 meters as the van travels along at normal highway speeds. The images provide a full view of the road and other assets. In transportation parlance, assets are signs, poles, pavement markings, and the like.

High-resolution revolution
The HD cameras can capture images at resolutions of up to 2448 x 2048 dots per inch. By comparison, high-end HD television resolutions are 1920 x 1080 dpi.

“The imagery is leaps and bounds ahead of what we had previously,” says O’Connor, who has 22 years with ADOT, the last six in photolog.

Using just one dashboard-mounted camera, the previous photolog van captured roughly 1.8 million photographs in 2008. Those images, along with GPS information added up to about 75 gigabytes of data. According to Bush, the new two-camera van took more than 3.6 million photos in 2009. Factoring in GPS and other information, the result was about eight terabytes of data—that’s almost 8,200 gigabytes.

“It’s a 100-fold increase in storage and data collected,” says Bush, who has been photologging for eight of his 11 years at ADOT.

Photolog project manager Jim Snow adds that the images are sharper.

“Now you can make out milepost numbers from 250 feet away,” Snow says. “It’s a 100 times better than the previous van. You can clearly see the details of a hex nut on a sign, that’s how good it is.”

In addition to the HD photos, Bush and O’Connor also collect Light Detection And Ranging data, or LiDAR, and highly accurate GPS information.

LiDAR is game changer
The main thing separating the new technology from the old is LiDAR, which has a wide variety of military and civilian applications. The HD cameras share space atop the van with two LiDAR lasers, one positioned horizontally to capture the roadway and the other positioned vertically to capture the roadside. Each laser takes 75 scans per second with each scan collecting about 10,000 points per scan. The points create 3D point cloud models of roadways, corridors and assets.

The 3D point clouds pinpoint the exact location of roadside assets such as signs, poles and pavement markings and give detailed information about each asset including its height, width and more. It can even compare point clouds from one year to the next, capturing any changes to assets. Snow believes that ADOT is the only state DOT using LiDAR technology for its photolog program, but the word is out. He’s been contacted by at least seven other DOT’s interested in learning about LiDAR’s potential.
GPS on steroids

Snow refers to the new van’s GPS system as “GPS on steroids.” It can calculate the exact location of the road and roadway assets in real-time with an accuracy of within 27 inches. After the data is processed, the accuracy increases to within 4 inches. If the GPS system malfunctions or it loses its signal, the van’s Distance Measuring Instrument and an Inertial Measurement Unit (IMU) continue tracking the van’s location, filling in gaps until the GPS system is restored.

Creating a visual inventory isn’t the only purpose of photologging. The Arizona Transportation Information System, commonly called ATIS, uses the data to update the “electronic centerline” or base road map for the state. The ATIS integrates hardware, software, and data for capturing, managing, analyzing, and displaying all types of geographically referenced information.

Processing the data

It takes about three months to process eight months worth of photolog data, a job that O’Connor and Bush used to do, but which is now performed cooperatively by Snow and GIS programmer Jarrod Celuch. They process the data and then provide it (the imagery, LiDAR and GPS data) to ADOT’s Information Data Warehouse, where those with ADOT intranet access can view it.

Who uses it?

Divisions and groups across ADOT tap into the rich storehouse of photolog data for a variety of purposes. The Asset Management group uses it to refine its huge inventory of roadway assets. The Signing Group is using it to help create a more complete and exhaustive sign inventory. The Risk Management office, as well as the Attorney General’s office, may use older and newer data for litigation defense. Materials Group and maintenance engineers can visually assess roadway conditions on office computers, rather than traveling to a site for inspections, which always carry a safety risk. Striping crews can use the data to determine areas where the highway needs to be restriped.

The photolog specialists logged certain “secondary targets” for the first time earlier this year. Such targets included frontage roads, traffic interchanges, ramps, and ports of entry. (There is even talk of logging airport runways.) In the past, the technology to capture these targets had not been developed.

Bugs Are the Enemy

“Bug hits are a big deal,” O’Connor says, “because the cameras are outside.” When bugs go splat, Bush and O’Connor pull over and clean the lens before resuming the photolog. Both recall a day last spring in Yuma when they encountered thousands of butterflies that forced them to shut down logging activities for an hour. “It was snowing butterflies,” Bush said. Wet weather also dampens logging efforts. “Any misting on the cameras makes them unusable,” O’Connor said.

Funny looks

With the cameras, LiDAR sensors, and GPS equipment on top, the van frequently draws double takes from pedestrians and motorists, some of whom immediately slow down mistaking the vehicle for a photo-enforcement van. As a precaution, the driver’s side, rear-quarter panel features the phrase “This is not a photo-enforcement van” in bold letters.

On logging days, the first order of business is to wake up the IMU system. This is accomplished by driving the van in figure-8 patterns six times around a parking lot or similar space. Typically, the team will do this in an ADOT Maintenance Yard if one is nearby, or in an empty parking lot out of public view. “We already look kind of different,” Bush remarks, “and when people see us driving in figure 8s, they really begin to wonder.”

Continued on page 9
Continued from page 4

Future
Bush and the others see an open road ahead for the photolog program. "You tell us what and where, and if the current van can get there, we can capture the data," Bush says. "And this technology is only going to get better."

Snow agrees. "The beauty of all this is that because LiDAR's application within the DOT space is so new, we're free to realize and develop all of it's possible implementations and utilizations," Snow said.

"ADOT now has the capability to quickly and efficiently capture its roadway asset's locations and attributes...all from the comfort of an armchair. From a safety standpoint alone, this is invaluable."

For now, the photolog team is eager to get the data into the hands of those who can put it to good use. "Our biggest fear is not if we can collect and provision this data, we've already proven that we can do this," Snow says. The challenge now is to ensure it will be utilized by the applicable divisions and groups within the agency.

For more information about the photolog van, contact Jim Snow at 602-712-8012, or jsnow@azdot.gov. Data from 2009, captured with the new technologies, is expected to be available sometime this month on the ADOT Information Data Warehouse website. For security reasons, it is only available to people with ADOT intranet access at http://iadw/.

WILDFLOWERS GONE WILD — ADOT’s Roadside Development section continually presents floral bouquets to motorists moving over the state highway system.

Although wildflowers populate the shoulders and slopes alongside the highways, the colorful vegetation doesn’t sprout up on its own. Roadside Development, under direction of manager and chief landscape architect LeRoy Brady, put it there. In urban areas, flowers grow from transplanted plants as well as seeded plants. In rural areas, they grow from seeded plantings.

Besides being pleasing to motorists, the wildflowers play a role in controlling erosion and crowding out weeds such as the Russian thistle, which after drying up breaks free of its roots and forms tumbleweeds.

Enhancing the landscape by beautifying areas disturbed by construction is a part of ADOT projects, such as the award-winning effort to widen U.S. Route 60 at Gonzales Pass east of Superior (see photograph above).

Some of the flowers in ADOT’s see mix include brittlebrush, desert marigold, desert globe mallow, Arizona bluebells, owl’s clover, desert senna, Mexican poppies, prickly poppies, bladdernard, and penstemon parryi.
Synthesis of Transportation Applications of Mobile LIDAR

Keith Williams 1,*, Michael J. Olsen 2, Gene V. Roe 3 and Craig Glennie 4

1 UNAVCO, 6350 Navitas Drive, Boulder, CO 80301, USA
2 School of Civil and Construction Engineering, Oregon State University, 220 Owen Hall, Corvallis, OR 97331, USA; E-Mail: michael.olsen@oregonstate.edu
3 MPN Components, 507 Ocean Boulevard #8, Hampton, NH 03826, USA; E-Mail: gene.roe@lidarnews.com
4 Department of Civil & Environmental Engineering, The University of Houston, Houston, TX 77004, USA; E-Mail: cglennie@uh.edu

* Author to whom correspondence should be addressed; E-Mail: keithw@unavco.org; Tel.: +1-541-224-2924; Fax: +1-803-581-7431

Received: 3 June 2013; in revised form: 24 August 2013 / Accepted: 9 September 2013 / Published: 18 September 2013

Abstract: A thorough review of available literature was conducted to inform of advancements in mobile LIDAR technology, techniques, and current and emerging applications in transportation. The literature review touches briefly on the basics of LIDAR technology followed by a more in-depth description of current mobile LIDAR trends, including system components and software. An overview of existing quality control procedures used to verify the accuracy of the collected data is presented. A collection of case studies provides a clear description of the advantages of mobile LIDAR, including an increase in safety and efficiency. The final sections of the review identify current challenges the industry is facing, the guidelines that currently exist, and what else is needed to streamline the adoption of mobile LIDAR by transportation agencies. Unfortunately, many of these guidelines do not cover the specific challenges and concerns of mobile LIDAR use as many have been developed for airborne LIDAR acquisition and processing. From this review, there is a lot of discussion on “what” is being done in practice, but not a lot on “how” and “how well” it is being done. A willingness to share information going forward will be important for the successful use of mobile LIDAR.

Keywords: mobile LIDAR, transportation, MLS, mobile laser scanning
Remote Sens. 2013, 5, 4652-4692; doi:10.3390/rs5094652

Remote Sensing

ISSN 2072-4292
www.mdpi.com/journal/remotesensing

Review

Synthesis of Transportation Applications of Mobile LIDAR

Keith Williams 1,*, Michael J. Olsen 2, Gene V. Roe 3 and Craig Glennie 4

1 UNAVCO, 6350 Navitas Drive, Boulder, CO 80301, USA
2 School of Civil and Construction Engineering, Oregon State University, 220 Owen Hall, Corvallis, OR 97331, USA; E-Mail: michael.olsen@oregonstate.edu
3 MPN Components, 507 Ocean Boulevard #6, Hampton, NH 03826, USA; E-Mail: gene.roe@lidarnews.com
4 Department of Civil & Environmental Engineering, The University of Houston, Houston, TX 77004, USA; E-Mail: cglennie@uh.edu

* Author to whom correspondence should be addressed; E-Mail: keithw@unavco.org; Tel.: +1-541-224-2824; Fax: +1-303-581-7491

Received: 3 June 2013; in revised form: 24 August 2013 / Accepted: 9 September 2013
Published: 16 September 2013

Abstract: A thorough review of available literature was conducted to inform of advancements in mobile LIDAR technology, techniques, and current and emerging applications in transportation. The literature review touches briefly on the basics of LIDAR technology followed by a more in depth description of current mobile LIDAR trends, including system components and software. An overview of existing quality control procedures used to verify the accuracy of the collected data is presented. A collection of case studies provides a clear description of the advantages of mobile LIDAR, including an increase in safety and efficiency. The final sections of the review identify current challenges the industry is facing, the guidelines that currently exist, and what else is needed to streamline the adoption of mobile LIDAR by transportation agencies. Unfortunately, many of these guidelines do not cover the specific challenges and concerns of mobile LIDAR use as many have been developed for airborne LIDAR acquisition and processing. From this review, there is a lot of discussion on “what” is being done in practice, but not a lot on “how” and “how well” it is being done. A willingness to share information going forward will be important for the successful use of mobile LIDAR.

Keywords: mobile LIDAR; transportation; MLS; mobile laser scanning
The primary audiences of the document are management and staff who will be developing statements of work for MLS use in transportation.

Recommendation: Involve an experienced geomatics person throughout the entire process of using mobile LIDAR for a project.
Chapter 4 Workflow and Data Management
4.1 Workflow Stages
 4.1.1 Data Acquisition
 4.1.2 Georeferencing
 4.1.3 Post-processing
 4.1.4 Computation and Analysis
 4.1.5 Packaging and Delivery
4.2 Models vs. Point Clouds
4.3 Coverage
4.4 Sequential and Traceable Processes
4.5 Considerations for Information Technology
 4.5.1 File Management
 4.5.2 Information Transfer Latency
 4.5.3 Accessibility and Security
 4.5.4 Integrity
 4.5.5 Sunset Plan
 4.5.6 Software
 4.5.7 Hardware

Chapter 5 Organizational Data Mining
5.1 Single Repository
5.2 Historical
5.3 Faster Decisions
5.4 Costs
5.5 Redundancy

Chapter 6 Procurement Considerations
6.1 Decision Process
6.2 Generic Cost Considerations
6.3 System Ownership
 6.3.1 Owner/Operator
 6.3.2 Professional Consultant Services

Chapter 7 Implementation Plan for Transportation Agencies
7.1 Intent
7.2 Background
 7.2.1 The 3D Technology Revolution
 7.2.2 Mobile LIDAR
 7.2.3 Organizational Change
7.3 Strategic Plan
7.4 Innovation Group
7.5 Implementing the Guidelines
7.6 Documenting Results
7.7 Workflow Integration
7.8 Future Opportunities
Chapter 4 Workflow and Data Management

4.1 Workflow Stages
4.1.1 Data Acquisition
4.1.2 Georeferencing
4.1.3 Post-processing
4.1.4 Computation and Analysis
4.1.5 Packaging and Delivery

4.2 Models vs. Point Clouds

4.3 Coverage

4.4 Sequential and Traceable Processes

4.5 Considerations for Information Technology
4.5.1 File Management
4.5.2 Information Transfer Latency
4.5.3 Accessibility and Security
4.5.4 Integrity
4.5.5 Sunset Plan
4.5.6 Software
4.5.7 Hardware

Chapter 5 Organizational Data Mining

5.1 Single Repository
5.2 Historical
5.3 Faster Decisions
5.4 Costs
5.5 Redundancy

Chapter 6 Procurement Considerations

6.1 Decision Process
6.2 Generic Cost Considerations
6.3 System Ownership
 6.3.1 Owner/Operator
 6.3.2 Professional Consultant Services

Chapter 7 Implementation Plan for Transportation Agencies

7.1 Intent
7.2 Background
 7.2.1 The 3D Technology Revolution
 7.2.2 Mobile LIDAR
 7.2.3 Organizational Change
7.3 Strategic Plan
7.4 Innovation Group
7.5 Implementing the Guidelines
7.6 Documenting Results
7.7 Workflow Integration
7.8 Future Opportunities
Chapter 4 Workflow and Data Management
4.1 Workflow Stages
 4.1.1 Data Acquisition
 4.1.2 Georeferencing
 4.1.3 Post-processing
 4.1.4 Computation and Analysis
 4.1.5 Packaging and Delivery
4.2 Models vs. Point Clouds
4.3 Coverage
4.4 Sequential and Traceable Processes
4.5 Considerations for Information Technology
 4.5.1 File Management
 4.5.2 Information Transfer Latency
 4.5.3 Accessibility and Security
 4.5.4 Integrity
 4.5.5 Sunset Plan
 4.5.6 Software
 4.5.7 Hardware

Chapter 5 Organizational Data Mining
5.1 Single Repository
5.2 Historical
5.3 Faster Decisions
5.4 Costs
5.5 Redundancy

Chapter 6 Procurement Considerations
6.1 Decision Process
6.2 Generic Cost Considerations
6.3 System Ownership
 6.3.1 Owner/Operator
 6.3.2 Professional Consultant Services

Chapter 7 Implementation Plan for Transportation Agencies
7.1 Intent
7.2 Background
 7.2.1 The 3D Technology Revolution
 7.2.2 Mobile LIDAR
 7.2.3 Organizational Change
7.3 Strategic Plan
7.4 Innovation Group
7.5 Implementing the Guidelines
7.6 Documenting Results
7.7 Workflow Integration
7.8 Future Opportunities

Recommendation: Follow developments in agency-wide collection and deployment of data, but at present adhere to the provisions of your sunset plan.
Chapter 4 Workflow and Data Management

4.1 Workflow Stages
4.1.1 Data Acquisition
4.1.2 Georeferencing
4.1.3 Post-processing
4.1.4 Computation and Analysis
4.1.5 Packaging and Delivery
4.2 Models vs. Point Clouds
4.3 Coverage
4.4 Sequential and Traceable Processes
4.5 Considerations for Information Technology
4.5.1 File Management
4.5.2 Information Transfer Latency
4.5.3 Accessibility and Security
4.5.4 Integrity
4.5.5 Sunset Plan
4.5.6 Software
4.5.7 Hardware

Chapter 5 Organizational Data Mining
5.1 Single Repository
5.2 Historical
5.3 Faster Decisions
5.4 Costs
5.5 Redundancy

Chapter 6 Procurement Considerations
6.1 Decision Process
6.2 Generic Cost Considerations
6.3 System Ownership
 6.3.1 Owner/Operator
 6.3.2 Professional Consultant Services

Chapter 7 Implementation Plan for Transportation Agencies
7.1 Intent
7.2 Background
 7.2.1 The 3D Technology Revolution
 7.2.2 Mobile LIDAR
 7.2.3 Organizational Change
7.3 Strategic Plan
7.4 Innovation Group
7.5 Implementing the Guidelines
7.6 Documenting Results
7.7 Workflow Integration
7.8 Future Opportunities

Recommendation: Coordinate with other divisions/agencies prior to procuring mobile LIDAR services.

Recommendation: Perform a cost/benefit analysis and determine return on investment rather than focusing solely on the single project cost.

Recommendation: If parts of the workflow will be contracted out but others will be performed in-house, be sure that procedures will be properly coordinated with the data provider to minimize data transfer.

Recommendation: Always request a copy of the point cloud (at the highest level of processing completed) so that it is available for future data mining.
Recommendation: To streamline the adoption of MLS, a technology implementation plan should be developed.

Recommendation: Consider reengineering business processes and workflows to maximize the potential benefits of adopting MLS.

Recommendation: Consider forming an innovation group to address the evaluation and introduction of new technology.

Recommendation: Consider the use of pilot projects and the hiring of an independent consultant on the first few projects to advise and guide the process.

Recommendation: Consider the use of IDIQ contracts to pre-qualify service providers.

Recommendation: Consider the use of multiple sensors and platforms to maximize the return on data collection efforts.

Recommendation: Establish a staff training program as part of the technology adoption process.

Recommendation: When introducing new technology, the early adopters must be allowed to fail.

Recommendation: Document and publish the results of pilot projects so that others may learn from the process.

Recommendation: Be prepared to reengineer traditional 2D workflows to take full advantage of the new 3D paradigm.

Chapter 4 Workflow and Data Management
4.1 Workflow Stages
4.1.1 Data Acquisition
4.1.2 Georeferencing
4.1.3 Post-processing
4.1.4 Computation and Analysis
4.1.5 Packaging and Delivery
4.2 Models vs. Point Clouds
4.3 Coverage
4.4 Sequential and Traceable Processes
4.5 Considerations for Information Technology
4.5.1 File Management
4.5.2 Information Transfer Latency
4.5.3 Accessibility and Security
4.5.4 Integrity
4.5.5 Sunset Plan
4.5.6 Software
4.5.7 Hardware

Chapter 5 Organizational Data Mining
5.1 Single Repository
5.2 Historical
5.3 Faster Decisions
5.4 Costs
5.5 Redundancy

Chapter 6 Procurement Considerations
6.1 Decision Process
6.2 Generic Cost Considerations
6.3 System Ownership
6.3.1 Owner/Operator
6.3.2 Professional Consultant Services

Chapter 7 Implementation Plan for Transportation Agencies
7.1 Intent
7.2 Background
7.2.1 The 3D Technology Revolution
7.2.2 Mobile LIDAR
7.2.3 Organizational Change
7.3 Strategic Plan
7.4 Innovation Group
7.5 Implementing the Guidelines
7.6 Documenting Results
7.7 Workflow Integration
7.8 Future Opportunities
Chapter 14 Considerations for Common Mobile LIDAR Applications

14.1 General Considerations
14.1.1 General Mapping and General Measurements
14.1.2 Engineering Surveys (Generic Discussion)
14.1.3 Modeling

14.2 Project Planning
14.2.1 General Planning
14.2.2 Roadway Analysis
14.2.3 Digital Terrain Modeling

14.3 Project Development
14.3.1 CAD Models and Baseline Data
14.3.2 Virtual, 3D Design

14.4 Construction
14.4.1 Construction Automation, Machine Control and Quality Control
14.4.2 As-Built or As-Is and Repair Documentation
14.4.3 Quantities
14.4.4 Pavement Analysis
14.4.5 ADA Compliance

14.5 Maintenance
14.5.1 Structural Inspections
14.5.2 Drainage
14.5.3 Vegetation Management and Power Line Clearance

14.6 Operations
14.6.1 Emergency Response
14.6.2 Clearances
14.6.3 Traffic Congestion and Parking Utilization
14.6.4 Land Use and Zoning
14.6.5 BIM/BRIM

14.7 Safety
14.7.1 Extraction of Geometric Properties and Features Safety Analyses
14.7.2 Forensics and Accident Investigation
14.7.3 Driver Assistance and Autonomous Navigation

14.8 Asset Management
14.8.1 Asset Management, Modeling and Inspection, Inventory Mapping, and GIS
14.8.2 Sign and Billboard Inventory

14.9 Tourism
14.9.1 Virtual Tourism
14.9.2 Historical Preservation

14.10 Research
14.10.1 Unstable Slopes, Landslide Assessment and Coastal Change
Quality Control Considerations

PAG is considering establishing permanent photo-identifiable Ground Controls for 2015 orthophoto acquisition.
Available Guidelines

<table>
<thead>
<tr>
<th>Mobile LiDAR (Current)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALTRANS Chapt. 15 Survey Manual 2011 Florida DOT 2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mobile LiDAR (Development)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxDOT</td>
</tr>
<tr>
<td>ASPRS Mobile Mapping Committee</td>
</tr>
<tr>
<td>MoDOT 2010</td>
</tr>
</tbody>
</table>
"The recently passed Map-21 legislation (Moving Ahead for Progress in the 21st Century Act, P.L. 112-141) provides financial incentives for the use of 3D technology (FHWA 2012). In addition, FHWA is also promoting the use of 3D through their Every Day Counts (EDC) initiative (FHWA 2012). This program is “... designed to identify and deploy innovation aimed at shortening project delivery, enhancing the safety of our roadways, and protecting the environment.”

In the recently announced second round of initiatives, 3D modeling is highlighted. As stated on the program website, “As the benefits are more widely recognized, many in the U.S. highway industry will transition to 3D modeling over the traditional two-dimensional (2D) design process” (FHWA 2012).

In addition to using mobile LIDAR to collect and document the as-found conditions prior to construction, it also holds promise for supporting the construction process itself. Significant reductions in the cost of maintenance and protection of traffic can be achieved through the use of mobile LIDAR versus traditional survey methods as well as in measuring quantities.

As agencies transition to 3D there is also the opportunity to move to an all-digital construction environment. The availability of mobile devices such as tablet computers and smartphones will help to support this transition.”
Synthesis of Transportation Applications of Mobile LIDAR

Keith Williams 1, Michael J. Olsen 1, Gene V. Roe 3 and Craig Glennie 4

1 UNAVCO, 650 Nantlis Drive, Boulder, CO 80301, USA
2 School of Civil and Construction Engineering, Oregon State University, 220 Owen Hall, Corvallis, OR 97331, USA; E-Mail: michael.olsen@oregonstate.edu
3 MPN Components, 507 Ocean Boulevard #6, Hampton, NH 03826, USA; E-Mail: gene.roe@lidarnews.com
4 Department of Civil & Environmental Engineering, The University of Houston, Houston, TX 77004, USA; E-Mail: cglennie@uh.edu

* Author to whom correspondence should be addressed; E-Mail: keithw@unavco.org; Tel.: +1-541-224-2924; Fax: +1-803-581-7451

Received: 3 June 2013; Revised: 24 August 2013; Accepted: 9 September 2013
Published: 18 September 2013

Abstract: A thorough review of available literature was conducted to inform of advancements in mobile LIDAR technology, techniques, and current and emerging applications in transportation. The literature review touches briefly on the basics of LIDAR technology followed by a more in-depth description of current mobile LIDAR trends, including system components and software. An overview of existing quality control procedures used to verify the accuracy of the collected data is presented. A collection of case studies provides a clear description of the advantages of mobile LIDAR, including an increase in safety and efficiency. The final sections of the review identify current challenges the industry is facing, the guidelines that currently exist, and what else is needed to streamline the adoption of mobile LIDAR by transportation agencies. Unfortunately, many of these guidelines do not cover the specific challenges and concerns of mobile LIDAR use as many have been developed for airborne LIDAR acquisition and processing. From this review, there is a lot of discussion on “what” is being done in practice, but not a lot on “how” and “how well” it is being done. A willingness to share information going forward will be important for the successful use of mobile LIDAR.

Keywords: mobile LIDAR; transportation; MLS; mobile laser scanning
3.3.5. Software Considerations

four tasks that should be possible in various point cloud software programs:

(1) All data should be organized into one project where it can be processed and archived;

(2) The data should be viewable on different scales, such as micro-scale point clouds and a full project area (e.g., as a rasterized data set);

(3) The software should allow for geometric correction of the various sensors via a strip adjustment;

(4) The data should be able to be exported in many different formats, including standardized formats such as ASCII, LAS, and E57, to be compatible with other software.
3.3.5. Software Considerations

Some of the most common, but far from inclusive, software manufacturers are:

- Autodesk
- Bentley
- Certainty 3D
- ESRI
- Innovmetric
- LAStools
- Leica Geosystems
- Maptek
- Riegl
- Terrasolid
- Topcon
- Trimble
- Virtual Geomatics
Certainty 3D

http://www.youtube.com/watch?v=xkXq2QzBkNY&t=0
http://www.certainty3d.com/videos/Rey/Hqvideo/video.html
Virtual Geomatics

http://www.youtube.com/watch?v=2FtAeM7atsQ&list=PLAF1944FB108B93E4
Virtual Geomatics

http://www.youtube.com/watch?v=cusfn6yHfa8
Sources:

Mobile Mapping Solutions for Design & Asset Management, Woolpert May 2013:

TRANSEND, ADOT, May 2010:
http://azmemory.azlibrary.gov/cdm/ref/collection/statepubs/id/5531

NCHRP Report 748:
Guidelines for the Use of Mobile LiDAR in Transportation Applications
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_748.pdf

Synthesis of Transportation Applications of Mobile LIDAR, 2013:
http://www.mdpi.com/2072-4292/5/9/4652

Software:

Certainty 3D
http://www.certainty3d.com/mediacenter/?tab=0

Virtual Geomatics
http://www.virtualgeomatics.com/index.html
Questions?