University of Arizona Solar Initiatives

By: Ralph Banks, P.E., P. Eng., CEM, LEED AP
Assistant Director, Engineering Planning, Design & Construction
McClelland Hall

The roof-top photovoltaic array was completed in March 2011 and utilizes 1472 south facing modules inclined at 20 degrees to generate over 250 kilowatts (kW) AC power which will be fed into the University’s electrical grid.

Estimated Annual Production: 557,000 kilowatt hours (kWh)
Typical PV Module: 59”x39”x1.5” weight 40lbs – rated at 215W DC
Greenhouse Gas Reduction: 385 metric tons per year

Through its partnership with APS Energy Services, the University is advancing solar technology awareness and education on campus and throughout the community with McClelland Hall being part of a multi-building, campus-wide solar initiative to provide green energy generation.
Second Street Parking Structure

The roof-top photovoltaic array utilizes 1152 south facing modules inclined at 10 degrees to generate over 200 kilowatts (kW) AC power which will be fed into the University’s electrical grid.

Estimated Annual Production: 415,000 kilowatt hours (kWh)
Typical PV Module: 59"x39"x1.5" weight 40lbs – rated at 210W DC
Greenhouse Gas Reduction: 287 metric tons per year

Through its partnership with APS Energy Services, the University is advancing solar technology awareness and education on campus and throughout the community with Second Street Parking Structure being part of a multi-building, campus-wide solar initiative to provide green energy generation.
The roof-top photovoltaic array was completed in March 2011 and utilizes 352 south facing modules inclined at 20 degrees to generate over 60 kilowatts (kW) AC power which will be fed into the University's electrical grid.

Estimated Annual Production: 130,100 kilowatt hours (kWh)
Typical PV Module: 59”x39”x1.5” weight 40lbs - rated at 215W DC
Greenhouse Gas Reduction: 90 metric tons per year

Through its partnership with APS Energy Services, the University is advancing solar technology awareness and education on campus and throughout the community with McClelland Park being part of a multi-building, campus-wide solar initiative to provide green energy generation.
The roof-top photovoltaic array was completed in March 2011 and utilizes 128 south facing modules inclined at 20 degrees to generate over 22 kilowatts (kW) AC power which will be fed into the University’s electrical grid.

Estimated Annual Production: 46,800 kilowatt hours (kWh)
Typical PV Module: 59"x39"x1.5" weight 40lbs - rated at 215W DC
Greenhouse Gas Reduction: 32 metric tons per year

Through its partnership with APS Energy Services, the University is advancing solar technology awareness and education on campus and throughout the community with Student Recreation Center being part of a multi-building, campus-wide solar initiative to provide green energy generation.
The Solar Thermal Array on the Eastern roofs of this facility generate over 6,500,000,000 BTU’s of thermal energy per year utilizing 346 evacuated tube solar thermal collectors. This energy is used to drive a 140 ton absorption cooling plant that can provide over 500 ton-hours of cooling per day and while annually providing over 30% of the energy necessary for heating the pool and offsets the use of natural gas heating.

Estimated Annual Production: 1,905,750 kilowatt hours (kWh) equivalent
Greenhouse Gas Reduction: 1,317 metric tons per year

Through its partnership with APS Energy Services, the University is advancing solar technology awareness and education on campus and throughout the community with Student Recreation Center being part of a multi-building, campus-wide solar initiative to provide green energy generation.
The Solar Thermal Array on the Eastern roofs of this facility generate over 6,500,000,000 BTU’s of thermal energy per year utilizing 346 evacuated tube solar thermal collectors. This energy is used to drive a 140 ton absorption cooling plant that can provide over 500 ton-hours of cooling per day and while annually providing over 30% of the energy necessary for heating the pool and offsets the use of natural gas heating.

Estimated Annual Production: 1,905,750 kilowatt hours (kWh) equivalent
Greenhouse Gas Reduction: 1,317 metric tons per year

Through its partnership with APS Energy Services, the University is advancing solar technology awareness and education on campus and throughout the community with Student Recreation Center being part of a multi-building, campus-wide solar initiative to provide green energy generation.
The Solar Thermal Array on the roof of the Mary Roby Gymnastics Center generates over 400,000,000 BTU's of thermal energy per year utilizing 50 solar thermal modules. This energy is used to provide over 20% of the energy necessary for heating the pool and offsets the use of natural gas heating.

Estimated Annual Production: 155,750 kilowatt hours (kWh) equivalent
Greenhouse Gas Reduction: 108 metric tons per year

Through its partnership with APS Energy Services, the University is advancing solar technology awareness and education on campus and throughout the community with Student Recreation Center being part of a multi-building, campus-wide solar initiative to provide green energy generation.
The ground mounted photovoltaic array was completed in February 2011 and utilizes 28 tracking modules to generate approximately 10 kilowatts (kW) AC power which will be fed into the Agricultural Center’s electrical grid.